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Abstract 

Copper is essential to the creation and regeneration of the skin. In the recent decade, copper has been used in 

consumer and medical device products because of two fundamental qualities. Copper is an essential mineral for 

angiogenesis, skin formation and expression, and extracellular skin protein stability are just a few of the 

physiological and metabolic processes. On the other hand, copper is a potent biocide. Copper oxide is vital for a 

variety of physiological functions in the skin. Copper increases collagen, integrin, and fibronectin formation in 

the skin. Along with a rise in wrinkles and drooping skin on the face, there is a significant loss of skin elasticity 

and shrinking. Skin ageing symptoms include wrinkles, loss of suppleness, laxity, and a rough-textured 

appearance. It is frequently induced by sun exposure, although it can also be caused by pollution and smoking. 

Ageing is characterised by gradual changes in the majority of physiological systems. Thus, copper is required to 

develop and regenerate various skin processes, including skin ageing, skin development, and wound healing. 

Copper is considered safe for humans, as indicated by the widespread use of copper intrauterine devices and 

over-the-counter wound care medications containing copper. Copper has considerable biocidal properties and 

has been used as a biocide by numerous civilisations. As a result, it is not unexpected that copper and copper 

compounds have been utilised to cure skin illnesses and other ailments. 
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Introduction: 

Copper is required for a variety of physiological 

processes occurring in the skin. Fibroblasts and 

massive, dynamic extracellular matrix (ECM) 

structures make up the majority of the skin's dermal 

layer (1, 2). These ECM structures, primarily 

composed of collagens I and III, elastin and fibrillin 

fibres, and glycosaminoglycan-rich proteoglycans, 

interact strongly, imparting strength, extensibility, 

and elasticity to the skin (3). As humans age, the 

amount and size of fibroblasts in the dermis 

diminishes, as does the amount of ECM produced by 

the skin's remaining fibroblasts (3). This results in 

structural and cosmetic changes to the skin, including 

a significant loss of skin elasticity and recoil, an 

increase in the look of wrinkles and sagging skin on 

the face, particularly around the eyes (4, 5). Reduced 

skin elasticity, wrinkles, and sagging can be caused 

by external factors such as UV radiation, which 

causes sunspots and uneven skin tone (3, 6). Copper 

is a critical mineral that has a role in a variety of 

physiological processes in humans (7). Copper boosts 

collagen, integrin, and fibronectin formation in the 

skin (7). Copper induces the expression of lysyl 

oxidase, metalloproteinases, glycosaminoglycans, 

and small proteoglycans involved in matrix 

remodelling, cell proliferation, and re-epithelization 

(8). Additionally, copper helps stabilize the ECM 

after it is formed (9, 10). This review aims to identify 

the roles of copper oxide and the mechanism by 

which it benefits the skin. 
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Skin aging: 

The skin is the human body's biggest organ, covering 

the whole surface. Its primary function is to separate 

and shield the body's internal organs from the 

external environment and receive sensory stimuli, 

assist in temperature regulation, and excrete 

undesirable substances (11, 12). Over time, the 

changes of the skin are much more closely related to 

the skin's interaction with its environment than they 

are to genetic predisposition. Thus, skin ageing can 

be attributed to one's personal lifestyle in humans 

(13). Smoking, excessive exposure to sun radiation, 

and low air humidity, for example, are all known to 

contribute to the appearance of wrinkles (14). 

Additionally, a poor diet, excessive alcohol 

consumption, and certain diseases such as diabetes 

mellitus significantly accelerate skin ageing. People 

must arm themselves to prevent two different 

mechanisms that increase the aging of the skin (15). 

intrinsic and environmental, when facing the ravages 

of time.In the first around the age of 30, 

chronological signs of aging begin to appear, when 

cell renewal slows and hormone production changes, 

visible on the skin (16, 17). When exposed to 

external elements, particularly UV rays that are not 

protected, extrinsic agents accelerate the rate of 

normal skin ageing by forming free radicals that 

damage the skin's structural components, destroying 

collagen and elastin fibres while dehydrating the 

skin, resulting in symptoms such as dyschromia, 

changes in skin relief, and wrinkles among other 

things (18-20). The observed causal connection 

between oxidative stress and numerous degenerative 

processes has spurred interest in the efficiency of 

various antioxidants for topical use (21). 

Antioxidants are substances that prevent or inhibit the 

formation of free radicals (21). Consumer 

acceptability of a cosmetic product is mostly 

determined by its fragrance and color (21, 22). Thus, 

protection against lipid oxidation is critical, since 

many products have a short shelf life due to oxidation 

of the excipients, which can alter their fragrance and 

colour (23). Antioxidants can also be considered 

critical for formulation stability (24). The most 

prevalent form of oxidation is lipid oxidation, which 

occurs in fats and oils (24, 25). Thus, using catalysts, 

fats and oils are converted to free radicals, which are 

then transformed into peroxides and hydroperoxides 

by the action of oxygen, resulting in the formation of 

breakdown products (rancidity) (23, 26, 27). The skin 

covers the entire body's surface and is exposed to a 

range of environmental insults on a regular basis, 

including pathogens, injuries, and ultraviolet 

radiation (UV) (28). Temperature regulation, defense, 

sensing, and vitamin D generation are all important 

functions (13, 29). The skin's structural organization 

is one of its many defense systems against 

environmental insults: both the dermis and epidermis 

include enzymes, cells, and other chemicals that 

contribute considerably to protection (30). Various 

enzyme families especially contribute to skin defense 

by scavenging free radicals. molecules derived from 

pathogens, injuries, and UV radiation. Only enzymes 

like catalase, superoxide dismutase and peroxidase 

have antioxidant activity, and a few supporting 

enzymes can neutralise the harmful molecules called 

free radicals (31).  

Lipid oxidation, interestingly enough, cannot be 

completely avoided or stopped (24, 32). It can be 

reduced to significantly improve the final product's 

stability and valuable life. Thus, while some 

antioxidants are deployed to defend the product itself, 

others shield the skin, scalp, and mucous membranes 

from the application site (33). 

Free radical: skin damage:  

The outer orbit of a free radical contains a single 

unpaired electron (34). Chemical reactions with other 

molecules release the energy produced by their 

unstable structure like as proteins, lipids, and 

carbohydrates, as well as membrane-specific 

membrane compounds and nucleic acids (34).The 

amino acids in proteins are altered by oxygen radicals 

and other reactive species, Enzymatic proteins often 

endure structural or functional changes as a result of 

this (22). Reactive oxygen species (ROS), also 

known as oxygen-derived products, are produced in 

endoplasmic reticulum, mitochondria, and 

peroxisomes during normal aerobic respiration and 

are involved in various biochemical activities that 

control cell growth proliferation, apoptosis, and 

autophagy, as well as other processes (35). It is a 

keratinocyte cytoplasmic protein called Kelch-like 

ECH-associated protein 1 (Keap1) (36). It is 

frequently associated to the nuclear factor erythroid 

2-related factor 2 (Nrf2), which, according to 

Dinkova-Kostova et al, performs a role in the 

production of erythroid 2 breaks away from Keap1 
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and it eventually goes to the nucleus and functions as 

a transcription factor, causing antioxidant enzymes 

such as copper/zinc SOD (Cu/Zn SOD) to be 

produced (37, 38). Additionally, autocatalytic 

processes can be triggered by the production of ROS. 

which generate additional free radicals, propagating 

the damage chain (39). These are intrinsically 

unstable and will typically degrade spontaneously 

(40). For instance, the superoxide anion is unstable 

and degrades on its own into oxygen and hydrogen 

peroxide in the presence of water (40). Numerous 

other exogenous factors can induce ROS production, 

such as pollutants and ultraviolet light (41). 

Excessive ROS production can lead to premature skin 

aging and the development of skin cancer (11). The 

human skin is constantly exposed to three types of 

ultraviolet radiation (13, 42). On the other hand, 

Cornification occurs in the epidermis via the self-

protecting cells of keratinocytes (43). Furthermore, 

proline -rich proteins, also known as stress-inducible 

proteins, are tiny proteins with a lot of proline, 

expressed in the thickened cell envelope to protect 

keratinocytes from ROS (42). 

Cu/Zn Superoxide Dismutase (SOD): 

SOD is a highly conserved enzyme that is extensively 

produced in aerobic species' cytoplasm and is 

essential for cellular defense against oxidative stress 

(44). It belongs to a group of enzymes that catalyze 

superoxide radical dismutation (25). These radicals 

are created as a result of a variety of biological 

processes, including normal respiration products and 

immune cell oxidative bursts (45). SOD comes in 

multiple forms (Mn, Zn, Cu, Fe) and is capable of 

inactivating both intra- and extracellular superoxides 

(32). Copper and zinc SOD (SOD1), which is found 

in the nucleus, cytoplasm, peroxisomal and 

lysosomal compartments, and mitochondrial 

intermembrane space, has been studied in 

hepatocytes (32). Manganese SOD (SOD2) is found 

primarily in the mitochondrial matrix (46). The third, 

Cu/Zn extracellular SOD (SOD3) is a copper and 

zinc-containing extracellular SOD that is released. 

Anions of the superoxide radical are highly unstable 

molecules that are frequently generated during 

aerobic metabolism (47). It has been suggested that 

oxidative stress, which is caused by superoxide, is a 

factor in the beginning of a variety of diseases, 

including neurological illnesses, cancer, diabetes, 

premature aging, and dermatitis, due to the 

uncontrolled generation of superoxide and its 

reaction products (48). After UV exposure, the skin 

produces more ROS. Antioxidant enzymes can be 

released by epithelial cells and thymus-derived 

fibroblasts, particularly during times of stress (48). 

Mn SOD and cytosolic Cu/Zn SOD are found in all 

mammalian cells (48). Still, the extracellular only the 

high-molecular-weight isoform of SOD appears to be 

expressed. in a subpopulation of cells (49). There was 

a study found that an increase in extracellular SOD 

caused by ROS may act as a cancer suppressor, 

which supports Marklund's discovery of extracellular 

SOD's location both in fluid and in the extracellular 

matrix of tissues. In connective tissue, 

immunohistochemistry revealed the presence of EC 

SOD (50). The thymus, stomach, and skeletal muscle, 

on the other hand, lack it. Although extracellular 

SOD has been shown to protect the extracellular 

space and endothelial cell surface, its activity is 

relatively low (31, 51). These findings imply that the 

enzyme can act as paracrine and distant cells. SOD 

activity generates hydrogen peroxide, which inhibits 

the enzyme. This case, the superoxide radical is not 

neutralized and inhibits subsequent enzymes (for 

example, catalase) (48, 52). 

Cu/Zn SOD is a homodimeric protein with a 

molecular weight of 15.9 kDa (32). Hydrophobic 

contacts stabilize the dimerization by increasing the 

stability of the solvent while lowering its accessibility 

(49). Each monomer is formed by two metal ions, a 

copper ion and a zinc ion, which perform structural 

or catalytic functions when combined. Cu/Zn SOD 

was initially detected in the cytosol, the outer 

membrane, and/or the intramembranous space, where 

superoxide radicals are formed between mitochondria 

and peroxisomes. Cu/Zn SOD seems to be a 

peroxisome-localized enzyme in fibroblasts (53). 

Cu/Zn SOD has recently been shown to have a 

significant novel function in yeast and humans (53). 

High levels of H2O2 promote the nuclear 

translocation of Cu/Zn SOD in response to oxidative 

stress, and the enzyme acts as a transcription factor, 

regulating the expression of genes involved in 

oxidative resistance and repair (44, 54). Additionally, 

it was demonstrated that only a small amount of 

Cu/Zn SOD scavenges superoxides in yeast, whereas 

the majority of Cu/Zn SOD is involved in peroxide 

signalling (53). On vertebrate cells, including human 

ones, few similar studies have been conducted, so it 
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would be helpful if the results in Saccharomyces 

cerevisiae could be replicated. Indeed, 25% of genes 

associated with human degenerative pathologies are 

nearly identical to those associated with yeast, 

allowing for the research of identical antioxidant 

response genes in eukaryotic species that are 

substantially simpler (55). In a recent study, 

researchers used immunocytochemistry to locate 

Cu/Zn-SOD in human skin under various conditions 

(22). In some studies, in the skin, SOD activity 

remains constant due to natural ageing and 

photoaging (56). The activity increases in the 

epidermis and decreases significantly in the dermis 

(57). Antioxidant enzyme activity appears to vary 

between cell types; for example, fibroblasts have 

higher catalase levels, glutathione peroxidase, and 

superoxide dismutase than keratinocytes (58). 

Environmental direct contact-induced ROS 

production in the skin can result in premature ageing, 

skin diseases, and cancer (58, 59). The amount of 

exposure and the type of skin determine the rate of 

photoaging. People who live in hot climates, for 

example, are more exposed to light and thus more 

susceptible to photoaging (58). However, another 

study reported that SOD in the stratum corneum 

during the seasonal activity appears to be constant 

(58, 60, 61). 

Copper oxide to improve skin characteristic: 

Copper is a critical trace element that is involved in a 

variety of physiological and metabolic processes 

functions in humans, including skin formation and 

wound repair (62). Copper is required for a variety of 

skin development and regeneration processes (62). It 

has been demonstrated that copper is absorbed 

through intact skin. Copper should be included in a 

daily allowance of 0.9 mg (63). Copper is safe for 

humans, as evidenced that copper intrauterine devices 

have been used widely for a long time and copper-

containing over-the-counter wound healing products 

(64). Dermal contact with copper poses an extremely 

low risk of adverse reactions (64). Copper is one of 

the nine minerals, humans require some vitamins, 

which are recognized as essential as it is involved in 

a variety of normal physiological mechanisms that 

occur in almost every human tissue, as well as the 

skin (64). Copper is found in approximately 110 mg 

per kilogram of body weight in the bones and 

muscles, 15% in the skin, 15% in the bone marrow, 

10% in the liver, and 8% in the brain (64). Uptake of 

copper, distribution of copper to various organs, 

excretion of excess copper, and metabolism are all 

highly coordinated events. Copper is naturally 

occurring in various foods, including vegetables, 

grains, and meat, and for adults, a daily copper intake 

of 1 mg is suggested (62, 64). Because copper 

increases angiogenesis, it is necessary for wound 

healing and stabilises the skin's ECM (62). Copper 

stimulates the proliferation of dermal fibroblasts; b) 

increases the production of collagen (types I, II, and 

V) and elastin fibre components (elastin, fibrillins) by 

fibroblasts, presumably via the induction of TGF 

stimulates HSp-47, which is required for collagen 

fibril formation; d) acts as a cofactor for LOX, which 

is required According to the above, Cu-GHK, a 

copper-binding peptide detected in people serum and 

cerebral fluid stimulates collagen and elastin protein 

production (62). Additionally, Cu-GHK increases 

integrin expression and enables epidermal basal stem 

cells to proliferate and survive (9, 64). As a result, it 

has been discovered that this peptide promotes 

wound healing (62). Additionally, patients with a 

deficiency in copper metabolism (Menkes patients) 

exhibit decreased LOX activity and collagen 

formation (62, 64). 

Copper as a biocidal properties: 

Copper also has potent biocidal properties and has 

been used as a biocide by numerous civilizations for 

centuries (65). Both gram-positive and gram-negative 

bacteria, including antibiotic-resistant bacteria, as 

well as bacterial spores, fungi, and viruses, are 

difficult to kill when exposed to high copper 

concentrations (66). They are sometimes killed 

within minutes of being exposed to copper or copper 

compounds (65). As a result, copper biocides have 

become indispensable, with thousands of tons used 

annually in agriculture, wood preservation, and 

antifouling paints worldwide (65). Copper 

compounds have been incorporated into textiles and 

solid surfaces in recent years for odour and microbial 

control, including reducing microbial bioburden in 

medical institutions (65, 66). Copper is toxic to 

microorganisms via several distinct mechanisms. 

These include death from direct contact and harm 

from copper ions released during the process (66). 

The damage is nonspecific and may include 

phospholipids found on the microorganisms' 

envelopes, microbial envelope or intracellular 

proteins, and nucleic acid (67). Numerous bacteria 
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and fungi, except viruses, deal with excess copper via 

intra- and extracellular sequestration via cell 

envelopes and efflux pumps on the membrane. 

Additionally, tolerance and adaptation occur when 

necessary genes are upregulated in the presence of 

copper and when secreted metabolites precipitate 

copper (68). On the other hand, microorganisms are 

incapable of dealing with copper overload (69). As a 

result, when they are exposed to high copper 

concentrations, they are irreversibly damaged and 

killed (70). Copper exists in a variety of oxidation 

states, including metallic copper (CuO), monovalent 

copper (Cu
+
), and divalent copper (Cu

2+
) (71). While 

Cu
+
 ions are more cytotoxic to bacteria than Cu

2+
 

ions, cuprous ions are more cytotoxic to fungi (72). 

Notably, redox cycling between Cu
2+ 

and Cu
+
 can 

catalyze the formation of short-lived hydroxyl 

radicals, which may contribute to the combined 

activity of cuprous and cupric ions being more 

cytocidal as compared to either oxidation state on its 

own (72). Under a wide range of environmental 

conditions, metallic copper emits noticeably more 

copper ions than Cu2O and CuO layers. In the oxygen 

present and the external metallic copper layer 

oxidizes under ambient conditions to Cu2O (72). At 

extremely high temperatures (>200°C), the Cu2O 

layer further oxidizes to CuO. Cu2O is just as 

impactful at contact killing as metallic copper (72). 

UV rays stimulate the production of matrix 

metalloproteinases (MMPs) in the skin, resulting in 

collagen degradation (62). The most remarkable 

effect is seen in photoaging, where increased MMP 

activity increases hydrogen peroxide accumulation 

due to decreased dermal catalase (62). Hydrogen 

peroxide accumulation alters the activity of mitogen-

activated protein (MAP) kinases involved in the pro-

collagen synthesis, thereby accelerating the ageing 

process (62). SOD's effect on cellular antioxidant 

metabolism has been demonstrated in vitro, as has 

interaction with MMP and the regulation of 

extracellular matrix destruction that results as a result 

(73). Later, these findings were confirmed in an in 

vivo study using a pig model. Clinical studies on 

radiation-induced fibrosis have revealed some 

evidence that Cu/Zn SOD may be developed into an 

anti-fibrotic agent, with its therapeutic effect being 

attributed to the down-regulation of transforming 

growth factor-beta 1 (TGF-beta1). Indeed, SOD 

significantly inhibits TGF-beta1 expression, whereas 

increased TGF-beta1 expression is associated with 

fibrotic diseases (73). To maintain a favourable 

oxidant balance, direct exposure of murine skin to 

various oxidative stresses necessitates a high 

antioxidant capacity (73, 74). In both young and 

ageing skin, enzymes and antioxidant substances 

measurements revealed that SOD activity was more 

significant in the epidermis than in the dermis. Histo-

densitometry confirmed these findings, revealing a 

negative connection between cutaneous Cu/Zn SOD 

and aging in humans and a higher level in males than 

females. Additionally, exposed skin expressed the 

enzyme at a higher level than non-exposed skin (74). 

Interestingly, carbazole has been shown to induce the 

production of ROS in the human keratinocyte cell 

line HaCaT (74). Carbazole is an aromatic 

heterocyclic compound, so named due to its structure 

containing one or more aromatic rings (74). When 

carbazole is present in human skin, such as in tattoo 

ink, extended exposure to sunlight can cause it to 

break down resulting in downregulation of 

antioxidant genes (hmox-1, keap-1, nrf-2, and bcl2) 

in HaCaT cells, as well as an increase in ROS, 

resulting in apoptotic cell death (75, 76). Experiments 

in vitro with HaCaT shed light on the physiology of 

SOD and oxidative stress-related skin diseases (75). 

Additionally, HaCaT cell lines were used to decipher 

an unexpected relationship between the NO/NOS 

system and Cu/Zn SOD (77). NO is thought to 

increase the expression of Cu/Zn SOD, thereby 

inhibiting the mechanism of keratinocyte 

proliferation (77). As a result, SOD defends human 

keratinocytes against UV damage, collagen and 

elastic fibre fragmentation, as well as 

metalloproteinase activation, cause ageing (77). A 

study published natural antioxidants derived 

primarily from plants for human skin: vitamin C, 

vitamin E, green tea, coenzyme Q10, and 

hydroxytyrosol are antioxidants that have been 

proved to mitigate the effects of UV radiation (78). A 

single UV rays exposure in human skin results in a 

transient decrease in SOD activity; however, chronic 

UVB irradiation results in an increase in epidermal 

SOD activity (78). UVB reduces the Cu/Zn SOD 

level in mouse skin, whereas UVA affects Mn-SOD 

(23, 78). On the other hand, seasonal variation has no 

effect on the SOD concentration in exposed or 

unexposed skin (18, 41, 78).  

Conclusion : 



Siriniya Siribrahmanakul et al International Journal of Medical Science and Current Research (IJMSCR) 
 

 

 
Volume 5, Issue 3; May-June 2022; Page No 453-462 
© 2022 IJMSCR. All Rights Reserved 
 

P
ag

e4
5

8
 

P
ag

e4
5

8
 

P
ag

e4
5

8
 

P
ag

e4
5

8
 

P
ag

e4
5

8
 

P
ag

e4
5

8
 

P
ag

e4
5

8
 

P
ag

e4
5

8
 

P
ag

e4
5

8
 

P
ag

e4
5

8
 

P
ag

e4
5

8
 

P
ag

e4
5

8
 

P
ag

e4
5

8
 

P
ag

e4
5

8
 

P
ag

e4
5

8
 

P
ag

e4
5

8
 

P
ag

e4
5

8
 

P
ag

e4
5

8
 

P
ag

e4
5

8
 

P
ag

e4
5

8
 

P
ag

e4
5

8
 

Copper is a necessary mineral for angiogenesis, skin 

creation and expression, and extracellular skin 

protein stabilization are just a few of the 

physiological and metabolic processes that it plays a 

role in. Additionally, copper possesses potent broad-

spectrum biocidal properties. Copper's combination 

of these two unique characteristics results in it a 

stunning active ingredient for improving skin health. 

Thus, it is unsurprising that numerous civilisations 

have used copper and copper compounds to treat skin 

diseases and other maladies for more than two 

millennia. Furthermore, the function of copper, zinc, 

and superoxide dismutase in human keratinocyte 

protection cell line HaCaT against UV-B-induced 

harm may be crucial. 
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