

A Prospective, Observational Study To Compare The Effectiveness Of Self-Administered Patient Questionnaires, The International Prostate Symptom Score (IPSS) And The Visual Prostate Symptom Score (VPSS), In Evaluating Lower Urinary Tract Symptoms In Patients With Benign Prostatic Enlargement

Dr. Samit Doshi¹, Dr. Siva Prasad Gourabathini², Dr. Vikash Kumar³, Dr. Ajay Kumar Gajengi⁴

DrNB Urology Resident¹, Consultant Urologist^{2,3,4}

Department Of Urology

Bhaktivedanta Hospital And Research Institute, Mira Road

*Corresponding Author:

Dr. Vikash Kumar

Head of Department of Urology

Bhaktivedanta Hospital And Research Institute, Mira Road

Type of Publication: Original Research Paper

Conflicts of Interest: Nil

Abstract

Background: Lower urinary tract symptoms (LUTS) due to benign prostatic hyperplasia (BPH) are prevalent in aging men. Accurate assessment of LUTS is essential for clinical decision-making. The International Prostate Symptom Score (IPSS) is the traditional tool used for symptom quantification; however, its dependence on literacy and numeracy limits its utility in low-literacy populations. The Visual Prostate Symptom Score (VPSS), a pictogram-based alternative, has emerged as a potentially more accessible and efficient option.

Objective: To compare the effectiveness, ease of use, and clinical correlation of two self-administered questionnaires—IPSS and VPSS—in evaluating LUTS among patients with Benign Prostatic Enlargement.

Methods: This prospective observational study was conducted on 100 male patients aged ≥ 45 years presenting with LUTS at a tertiary care center in India. Participants completed both IPSS and VPSS questionnaires and underwent uroflowmetry. Data on time to completion, need for assistance, educational background, and correlation with uroflowmetry parameters (Qmax, Qavg, voided volume) were analyzed using appropriate statistical methods.

Results: The mean age of participants was 64.23 ± 7.27 years, with the majority aged 55–75 years. The mean completion time for IPSS was significantly longer than for VPSS (178.28 ± 19.57 vs. 15.41 ± 3.35 seconds; $p < 0.0001$). Assistance was required by 81% of participants for IPSS completion compared to only 1% for VPSS ($p < 0.0001$). IPSS showed a moderate negative correlation with Qmax ($r = -0.62$, $p < 0.0001$) and a weaker but significant negative correlation with Qavg ($r = -0.32$, $p < 0.05$). VPSS demonstrated comparable moderate negative correlations with both Qmax ($r = -0.55$, $p < 0.0001$) and Qavg ($r = -0.54$, $p < 0.0001$). Neither score showed a significant correlation with voided volume.

Conclusion: VPSS is a simple, rapid, and literacy-independent tool for LUTS assessment in men with BPH. It is more practical than IPSS for use in resource-limited or low-literacy populations and correlates well with objective uroflowmetry parameters, supporting its broader adoption in clinical practice.

Keywords: Benign Prostatic Hyperplasia, Lower urinary tract symptoms, IPSS, VPSS, Uroflowmetry

INTRODUCTION

Benign prostatic hyperplasia (BPH) is one of the most common non-cancerous conditions affecting aging men globally, characterized by an enlargement of the prostate gland leading to lower urinary tract symptoms (LUTS) [1]. Epidemiological data indicates a rising global burden, particularly pronounced in low- and middle-income countries, reflecting changing demographic trends and an aging population [2]. The prevalence of histological BPH has been documented at approximately 50–60% by the age of 60 and escalates to about 80–90% by the age of 80 years [3]. Within the Indian context, BPH affects approximately 25% of men in their 40s, increasing sharply to 50% by the seventh decade [4].

Clinically, BPH manifests predominantly with LUTS, encompassing urinary frequency, urgency, nocturia, hesitancy, weak stream, incomplete voiding, and reduced quality of life (QoL) [5]. Objective evaluation of LUTS is essential not only to guide clinical decision-making but also to assess treatment effectiveness and progression over time [6]. Among several standardized tools developed for this purpose, the International Prostate Symptom Score (IPSS) is widely accepted and extensively utilized globally. IPSS consists of seven symptom-related questions along with one QoL assessment question and provides a structured measure of symptom severity [7]. Nevertheless, IPSS requires adequate literacy and numeracy levels, posing significant challenges in self-administration by patients, particularly among elderly populations with limited education or cognitive impairment [8].

Addressing these challenges, the Visual Prostate Symptom Score (VPSS), introduced by Van der Walt and colleagues, offers a pictogram-based alternative designed specifically to overcome the literacy and numeracy barriers associated with IPSS [9]. The VPSS employs simple visual illustrations to depict the strength of urinary flow, frequency of urination during the day and night, and QoL, thus enabling easy comprehension across various educational backgrounds [10]. Recent comparative studies have suggested VPSS to be a user-friendly, time-efficient instrument with good patient acceptance and strong clinical validity, showing significant correlations with uroflowmetry parameters [11–13].

Despite these promising observations, there remains a paucity of robust evidence regarding the superiority of VPSS over IPSS, especially within diverse Indian populations. The extent to which patient age, educational status, and time taken for questionnaire completion influence the relative effectiveness of VPSS compared to IPSS requires clearer elucidation. Additionally, establishing the reliability of VPSS scores against objective uroflowmetry findings is critical to support its broader clinical implementation.

Given this context, the present study was undertaken with the primary aim to compare the effectiveness of two self-administered patient questionnaires, IPSS and VPSS, in evaluating LUTS among patients diagnosed with benign prostatic enlargement. The specific objectives included assessing the correlation of both scores with uroflowmetry results, evaluating the influence of patient age and educational level on questionnaire completion, and quantifying the ease of administration in terms of the time required and assistance needed. Through these assessments, we aimed to validate VPSS as a simplified, reliable, and efficient alternative to IPSS, particularly suited for resource-limited and diverse clinical settings.

AIMS AND OBJECTIVES

Primary Objectives:

1. Comparing the diagnostic effectiveness of the International Prostate Symptom Score (IPSS) and the Visual Prostate Symptom Score (VPSS) in evaluating lower urinary tract symptoms (LUTS) in patients with benign prostatic hyperplasia (BPH).
2. Comparing the effectiveness of the International Prostate Symptom Score (IPSS) and the Visual Prostate Symptom Score (VPSS) in relation to uroflowmetry results.
3. To investigate the impact of education level and age on the completion and accuracy of IPSS and VPSS.
4. To analyze the time taken for patients to complete VPSS and IPSS, with or without assistance, across varying educational standards.

Secondary Objectives:

1. To assess the feasibility of using VPSS as a simplified and efficient alternative to IPSS by examining the reduced number of questions and pictorial representations.
2. To introduce and validate a new severity grading system for VPSS to determine whether an improved VPSS can replace IPSS in the Indian subcontinent.

MATERIALS AND METHODOLOGY

A prospective observational study was conducted at the Bhaktivedanta Hospital and Research Institute, Mira Road, Thane, Maharashtra, India. Ethical approval was obtained from the Institutional Ethics Committee, and informed written consent was obtained from all study participants prior to their inclusion. The study enrolled 100 male patients ≥ 45 years presenting with lower urinary tract symptoms suggestive of Benign Prostatic Hyperplasia.

Study duration- 6 months.

Eligibility Criteria:**Inclusion Criteria:**

1. Male patients ≥ 45 years of age.
2. Male patients who presented to the Urology OPD with chief complaint of Lower Urinary Tract Symptoms (LUTS).
3. Patients giving consent to take part in the study.

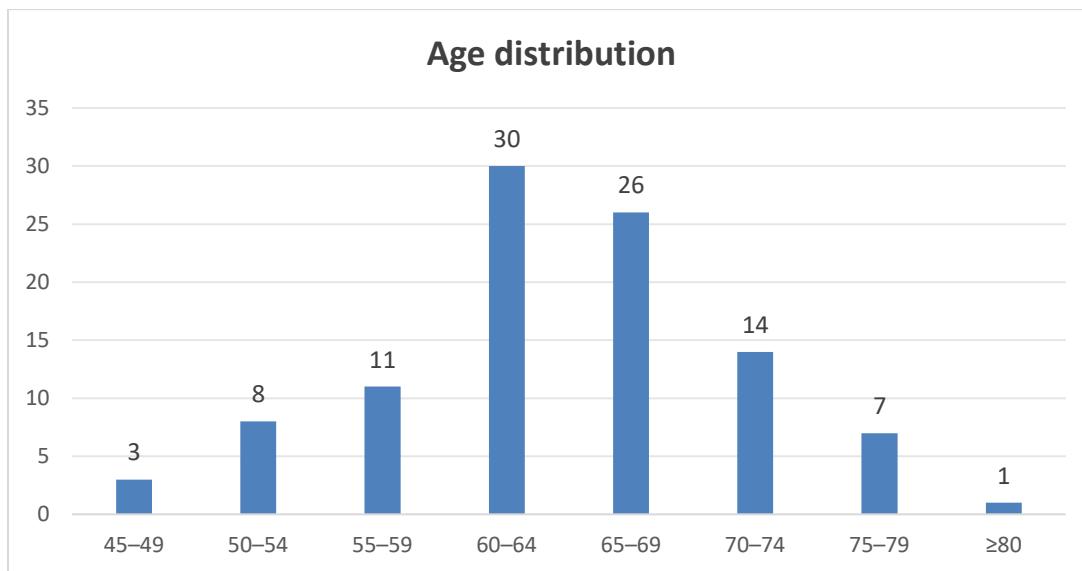
Exclusion Criteria:

1. Patients who had undergone surgical treatment due to a diagnosis of Benign Prostatic Hyperplasia.
2. Patients who had been receiving medical treatment with a diagnosis of Benign Prostatic Hyperplasia.
3. Patients with urethral stricture.
4. Patients with a prostate-specific antigen (PSA) level above 4 ng/ml.
5. Patients with systemic neurological disease.
6. Patients with history of pelvic radiotherapy.
7. Patients who had been diagnosed with Neurogenic Bladder.
8. Patients with Vesical calculi, Cystitis/Urinary Tract Infection, Carcinoma Bladder.
9. Patients who are Blind/Visually impaired.

10. Patients with indwelling Per urethral or Suprapubic catheters.
11. Patients on Diuretic therapy.
12. Patients with voided volume <150 mL.

Eligible participants were identified during routine urological outpatient visits. After obtaining informed consent, demographic details such as age, educational status, and clinical history were documented. Educational levels were categorized as illiterate, primary education (up to 5th grade), secondary education (6th–10th grade), higher secondary education (11th–12th grade), and graduate or higher. All participants completed both IPSS and VPSS questionnaires. The IPSS consists of seven symptom-based questions with an additional question on quality of life (Figure 8), while the VPSS utilizes pictograms assessing daytime frequency, nocturia, urinary flow, and quality of life (Figure 7). Both questionnaires were provided in vernacular language versions for patients who preferred them.

Participants underwent a standard-of-care uroflowmetry test, and parameters including maximum urinary flow rate (Qmax), average urinary flow rate (Qavg), and voided volume were measured. Additionally, the time taken to complete each questionnaire and whether participants required assistance for completion were recorded.


The collected data were summarized using descriptive statistics, including mean \pm standard deviation (SD), median, minimum, and maximum values. Normality testing was performed prior to statistical comparisons. Appropriate tests of significance were applied based on data distribution to evaluate correlations and differences between questionnaire scores and uroflowmetry parameters, as well as associations between educational status, age, and questionnaire completion outcomes. Statistical analysis was performed using SPSS software, with a p-value of <0.05 considered statistically significant. Data confidentiality was strictly maintained, with data accessible only to the research team, and results were reported without compromising patient anonymity.

OBSERVATIONS AND RESULTS

Demographic Information: Detailed demographic characteristics of the study participants are presented in Figure 1 & 2. Figure 1 displays the frequency of

participants across age ranges, showing a typical BPH-affected demographic (predominantly 55–75 years). The mean age was 64.23 ± 7.27 years.

Figure 1: Age distribution

Figure 2: Educational status

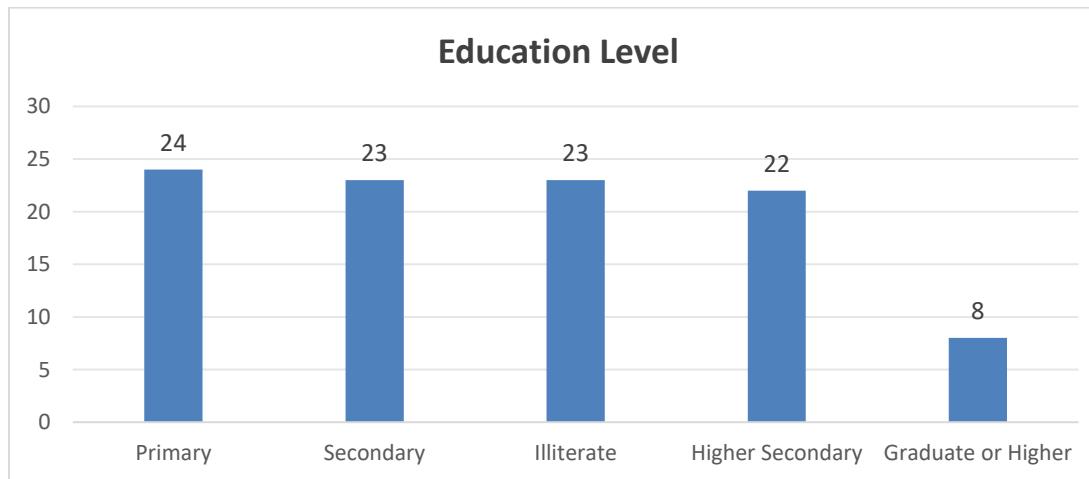


Figure 2 depicts the educational status of the study participants. A substantial proportion of the participants had low to moderate levels of formal education. Primary education was the most common category, accounting for 24% of the participants, followed closely by those with secondary education (23%) and illiterate participants (23%). Participants who had completed higher secondary education constituted 22% of the study population. Only a small proportion of participants were graduates or had higher educational qualifications (8%).

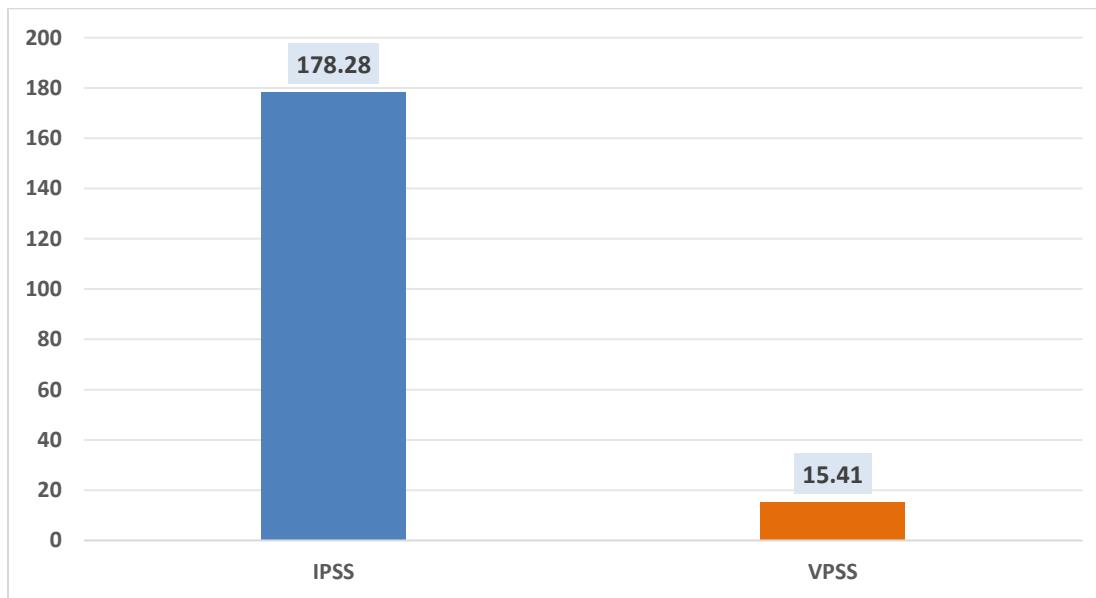

Questionnaire Completion Times

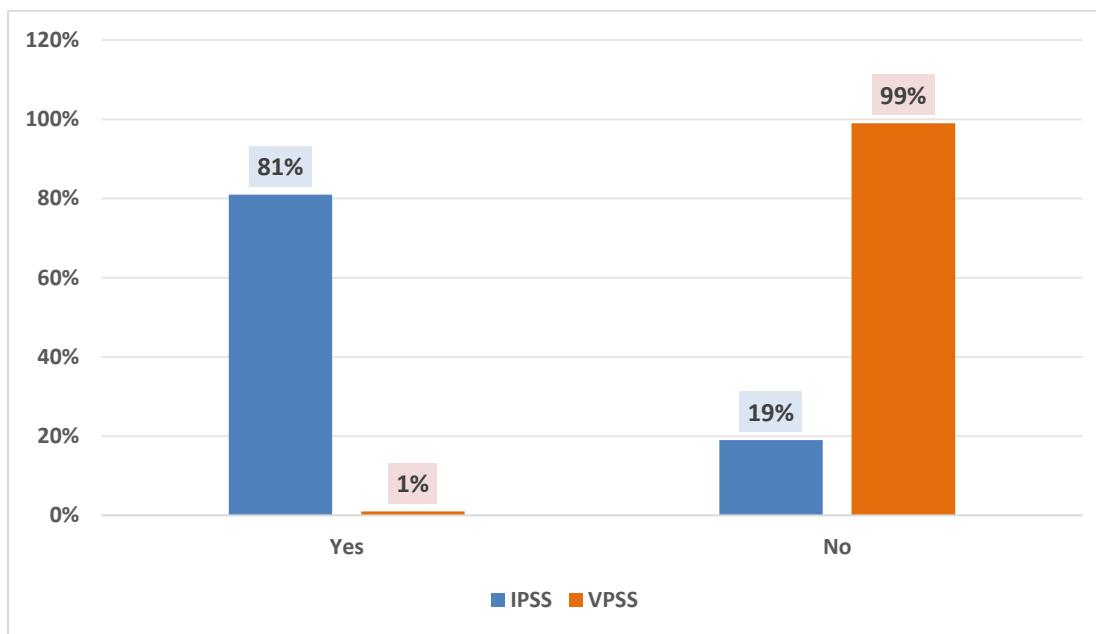
Table 1 and Figure 3 compares the time required to complete the International Prostate Symptom Score (IPSS) and the Visual Prostate Symptom Score (VPSS) questionnaires. The mean time taken to complete the IPSS was 178.28 seconds with a standard deviation of 19.57 seconds, indicating a relatively longer and more variable completion duration. In contrast, the VPSS required substantially less time, with a mean completion time of 15.41 seconds and a standard deviation of 3.35 seconds. This difference in completion times between the two questionnaires was found to be highly statistically significant ($p < 0.0001$).

Table 1: Comparison of Questionnaire Completion Times Between IPSS and VPSS Groups

Questionnaire type	Mean	SD
IPSS	178.28	19.57
VPSS	15.41	3.35
Significance	<0.0001	

Figure 3: Comparison of Questionnaire Completion Times Between IPSS and VPSS Groups

Assistance Required for Questionnaire Completion


Table 2 and Figure 4 present a comparison of the requirement for assistance during completion of the International Prostate Symptom Score (IPSS) and the Visual Prostate Symptom Score (VPSS) questionnaires.

A markedly higher proportion of participants required assistance to complete the IPSS, with 81% of patients needing help, whereas only 1% required assistance for completing the VPSS. In contrast, 19% of participants were able to complete the IPSS independently, while an overwhelming 99% completed the VPSS without any assistance. This difference in assistance requirement between the two questionnaires was found to be highly statistically significant ($p < 0.0001$).

Table 2: Assistance Required for Questionnaire Completion Across IPSS and VPSS Groups

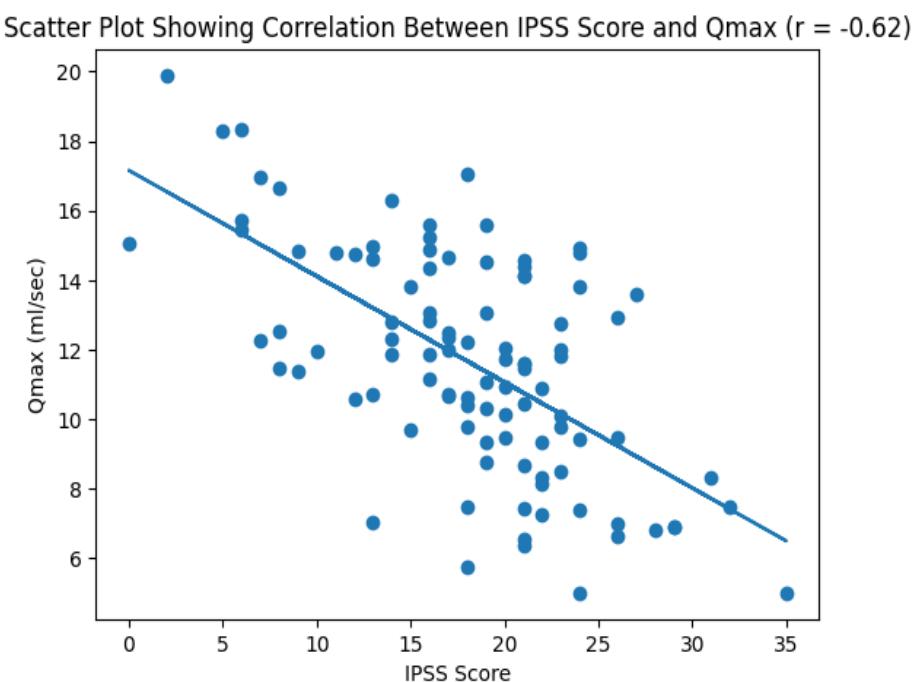
Assistance Required for Questionnaire Completion	IPSS	VPSS
Yes	81 (81%)	1 (1%)
No	19 (19%)	99 (99%)
Total	100 (100%)	100 (100%)
Significance	<0.0001	

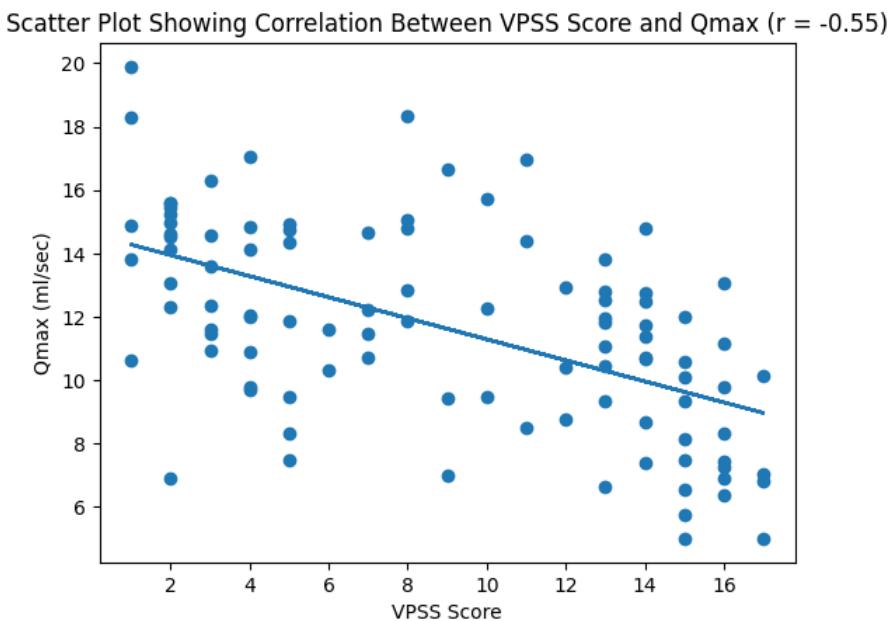
Figure 4: Assistance Required for Questionnaire Completion Across IPSS and VPSS Groups

Uroflowmetry Findings

Correlation between symptom scores and uroflowmetry parameters was assessed using Spearman's rank correlation coefficient. Table 3 summarizes the uroflowmetry parameters of the study participants. The mean maximum urinary flow rate (Qmax) was 11.64 ml/sec with a standard deviation of 3.21 ml/sec, reflecting reduced peak urinary flow consistent with lower urinary tract obstruction. The mean average urinary flow rate (Qavg) was 7.36 ml/sec with a standard deviation of 2.24 ml/sec, indicating overall diminished urinary flow among the study population. The mean voided volume was 252.76 ml with a standard deviation of 38.75 ml.

Table 4 illustrates the correlation between symptom scores (IPSS and VPSS) and objective uroflowmetry parameters. A moderate and statistically significant negative correlation was observed between IPSS score and maximum urinary flow rate (Qmax) ($r = -0.62$, $p < 0.0001$) (Figure 5), indicating that higher IPSS scores were associated with lower peak urinary flow rates. IPSS score also showed a significant negative correlation with average urinary flow rate (Qavg) ($r = -0.32$, $p < 0.05$). However, the correlation between IPSS score and voided volume was weak and not statistically significant ($p > 0.05$).


Similarly, VPSS score demonstrated a moderate and statistically significant negative correlation with both Qmax ($r = -0.55$, $p < 0.0001$) and Qavg ($r = -0.54$, $p < 0.0001$) (Figure 6), suggesting that increasing VPSS severity corresponded with a reduction in urinary flow rates. In contrast, the association between VPSS score and voided volume was weak and did not reach statistical significance ($p > 0.05$).


Table 3: Uroflowmetry Parameters

Uroflowmetry Parameters	Mean	SD
Qmax (ml/sec)	11.64	3.21
Qavg (ml/sec)	7.36	2.24
Voided Volume (ml)	252.76	38.75

Table 4: Correlation with Uroflowmetry Parameters

Symptom Score	Uroflowmetry Parameter	Correlation coefficient (r)	p-value
IPSS score	Qmax (ml/sec)	-0.62	<0.0001
IPSS score	Qavg (ml/sec)	-0.32	<0.05
IPSS score	Voided volume (ml)	-0.09	>0.05
VPSS score	Qmax (ml/sec)	-0.55	<0.0001
VPSS score	Qavg (ml/sec)	-0.54	<0.0001
VPSS score	Voided volume (ml)	-0.09	>0.05

Figure 5: Correlation Between IPSS And Qmax

Figure 6: Correlation Between VPSS And Qmax

DISCUSSION

Benign Prostatic Hyperplasia (BPH) is a highly prevalent condition among aging men and represents a major contributor to lower urinary tract symptoms (LUTS), particularly in developing countries such as India. Accurate assessment of LUTS is critical for grading symptom severity and correlating patient-reported outcomes with objective measures. Although the International Prostate Symptom Score (IPSS) is widely accepted, its reliance on textual comprehension and numerical grading limits its applicability in low-literacy settings. The Visual Prostate Symptom Score (VPSS), by contrast, uses pictorial representations and was designed to overcome these limitations. While VPSS has been evaluated in multiple international studies, Indian data—especially relating to usability metrics and uroflowmetry correlation—remain sparse. The present study addresses this gap by systematically comparing IPSS and VPSS in an Indian cohort using quantitative usability and objective functional parameters. The demographic profile of our cohort reflects the typical Indian BPH population.

The mean age was 64.23 ± 7.27 years, with the majority of patients clustered between 55 and 75 years, consistent with epidemiological data on age-related prostatic enlargement. Educational analysis revealed that 72% of participants were illiterate or educated only up to secondary school, while only 8% had graduate-level education. This distribution highlights the substantial literacy variability encountered in routine Indian urology practice and emphasizes the need for symptom assessment tools that remain valid across educational strata. Similar demographic patterns have been reported by Sanman et al. and Taneja et al., who noted that over two-thirds of their Indian cohorts had education below secondary level, significantly affecting IPSS usability [14,18].

Time efficiency emerged as one of the most prominent advantages of VPSS in the present study. The mean completion time for IPSS was 178.28 ± 19.57 seconds, compared to only 15.41 ± 3.35 seconds for VPSS, representing an almost 12-fold reduction in completion time, which was highly statistically significant ($p < 0.0001$). This magnitude of difference has substantial clinical implications in high-volume outpatient departments.

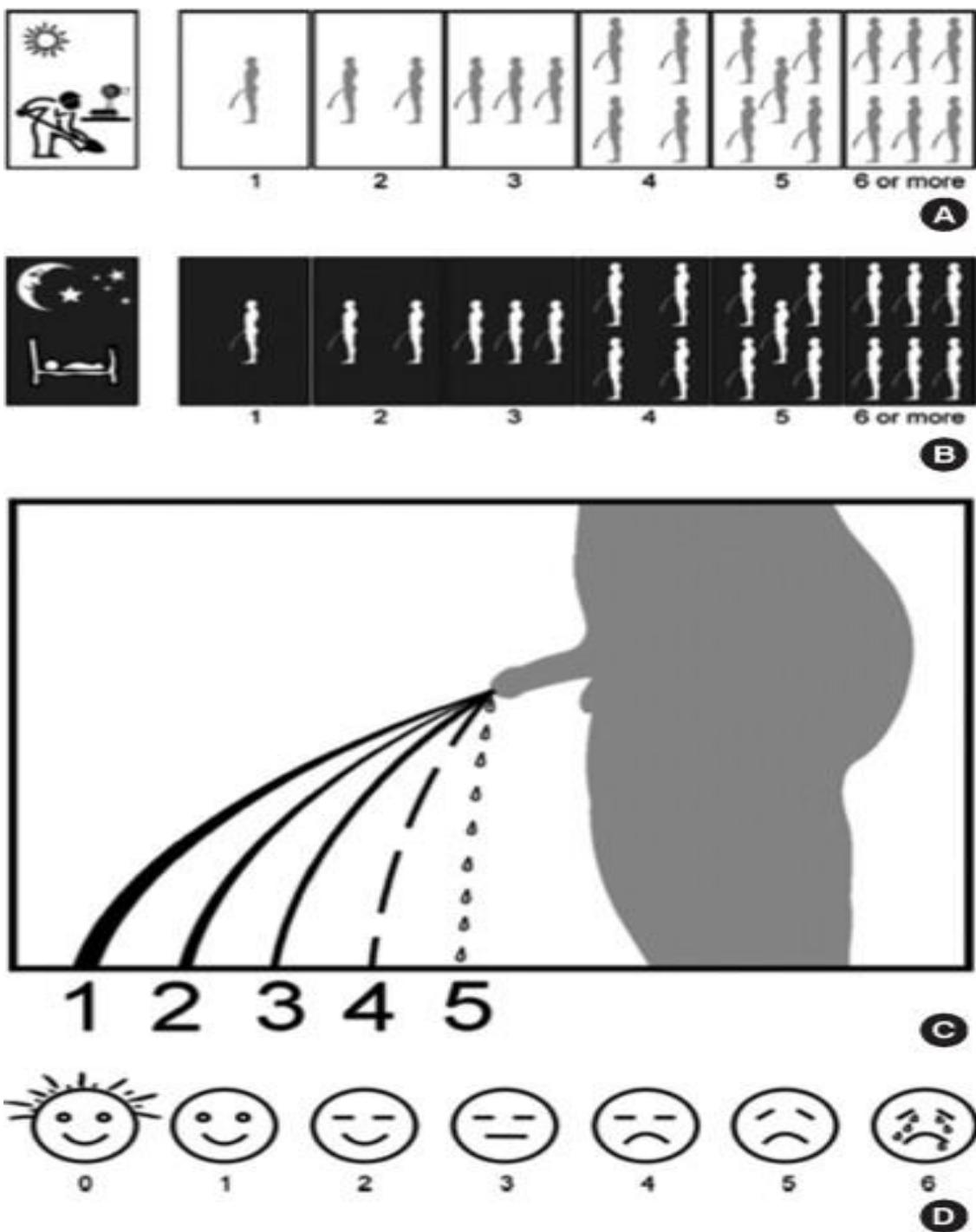
Comparable findings have been reported in earlier studies. Wessels and Heyns observed that VPSS required significantly less time to complete than IPSS (118 seconds vs. 215 seconds, $p < 0.001$) among South African men [12]. Gupta et al., in an Indian cohort, demonstrated that VPSS was completed nearly four times faster than IPSS (mean 23 seconds vs. 92 seconds, $p < 0.001$) [13]. The consistency of these findings across populations underscores the inherent efficiency of the pictorial VPSS format and supports its feasibility in real-world clinical settings where time constraints are a major concern.

The requirement for assistance during questionnaire completion further delineates the practical limitations of IPSS. In our study, 81% of participants required assistance to complete IPSS, whereas only 1% required assistance for VPSS, a difference that was highly statistically significant ($p < 0.0001$). Conversely, 99% of participants completed VPSS independently, compared with only 19% for IPSS. These findings closely parallel those reported by Sanman et al., who noted that over 93% of patients completed VPSS without assistance, including illiterate individuals, while nearly all illiterate patients required help with IPSS [14]. Gupta et al. reported that 75.6% of patients needed assistance for IPSS, compared to 24.4% for VPSS, again demonstrating the superiority of VPSS in low-literacy populations [13]. Putra et al. further quantified this effect, showing a statistically significant inverse relationship between educational level and IPSS usability ($p < 0.01$), while VPSS completion rates remained unaffected by education status [15]. These data collectively reinforce that VPSS minimizes interpreter bias, preserves the integrity of patient-reported outcomes, and is particularly well suited for populations with heterogeneous educational backgrounds.

Correlation with objective uroflowmetry parameters is a critical measure of construct validity for symptom scoring systems. In the present study, IPSS demonstrated a moderate and statistically significant negative correlation with Qmax ($r = -0.62$, $p < 0.0001$) and a significant negative correlation with Qavg ($r = -0.32$, $p < 0.05$), indicating that increasing symptom severity was associated with worsening urinary flow. However, the correlation between IPSS and voided volume was weak and not statistically significant ($r = -0.09$, $p > 0.05$).

VPSS showed a comparable and clinically meaningful correlation with uroflowmetry, with a moderate negative correlation with Qmax ($r = -0.55$, $p < 0.0001$) and Qavg ($r = -0.54$, $p < 0.0001$). However, the correlation between VPSS and voided volume was also weak and not statistically significant ($r = -0.09$, $p > 0.05$). These findings suggest that VPSS reflects functional obstruction effectively, with correlations comparable to IPSS, despite its simplified visual format. Similar observations were reported by Gupta et al., who found a significant correlation between VPSS and Qmax ($r = -0.435$, $p = 0.003$), while IPSS showed no significant association ($p = 0.491$) in their cohort [13]. Bhomi et al. also demonstrated stronger correlations between VPSS and uroflowmetry parameters, particularly in moderate-to-severe LUTS groups [16]. Putra et al. and Taneja et al. further emphasized that the visual depiction of urinary stream strength in VPSS more closely mirrored measured uroflowmetry values than text-based IPSS questions, enhancing its clinical interpretability [15,17]. Collectively, these data support the construct validity of VPSS and confirm that visual symptom scoring does not compromise correlation with objective functional measures.

CONCLUSION


The findings of this study demonstrate that the Visual Prostate Symptom Score (VPSS) is an effective and practical alternative to the International Prostate Symptom Score (IPSS) for the assessment of lower urinary tract symptoms (LUTS) in men with Benign Prostatic Hyperplasia (BPH), particularly in populations with limited literacy. VPSS was significantly faster to complete, required minimal to no assistance, and maintained strong clinical validity through its correlation with objective uroflowmetry parameters. These advantages make VPSS an efficient, user-friendly, and reliable tool for routine use in diverse clinical settings, especially in high-volume outpatient clinics and resource-limited environments. Integration of VPSS into routine urological evaluation can improve patient autonomy, reduce clinician workload, and enhance the accuracy of symptom assessment across all educational backgrounds.

CONFLICT OF INTEREST: NONE TO DECLARE

SOURCES OF FUNDING: NONE

REFERENCES

1. Lim KB. Epidemiology of clinical benign prostatic hyperplasia. *Asian J Urol.* 2017;4(3):148-51.
2. Awedew AF, Han H, Abbasi B, Abbasi-Kangevari M, Ahmed MB, Almidani O, et al. The global, regional, and national burden of benign prostatic hyperplasia in 204 countries and territories from 2000 to 2019: a systematic analysis for the Global Burden of Disease Study 2019. *Lancet Healthy Longev.* 2022;3(11):e754–76.
3. Ye Z, Wang J, Xiao Y, Luo J, Xu L, Chen Z. Global burden of benign prostatic hyperplasia in males aged 60–90 years from 1990 to 2019: results from the global burden of disease study 2019. *BMC urology.* 2024 Sep 5;24(1):193.
4. Launer BM, McVary KT, Ricke WA, Lloyd GL. The rising worldwide impact of benign prostatic hyperplasia. *BJU international.* 2021 Jun;127(6):722-8.
5. Morgia G, Russo GI, editors. Lower urinary tract symptoms and benign prostatic hyperplasia: from research to bedside. Academic Press; 2018 Jan 5.
6. Selman LE, Clement C, Ochieng CA, Lewis AL, Chapple C, Abrams P, Drake MJ, Horwood J. Treatment decision-making among men with lower urinary tract symptoms: a qualitative study of men's experiences with recommendations for patient-centred practice. *Neurourology and Urodynamics.* 2021 Jan;40(1):201-10.
7. Guzelsoy M, Aydos MM, Coban S, Turkoglu AR, Acibucu K, Demirci H. Comparison of the effectiveness of IPSS and VPSS without any help in LUTS patients: A prospective study. *Aging Male.* 2018;21(3):193-9.
8. Onowa V, Shuaibu S, Akpayak I, Ofoha C, Agbo C, Nabasu L, et al. Value of the visual prostate symptom score in evaluation of symptomatic benign prostatic enlargement: Prospective study in a Nigerian population. *Int J Res Med Sci.* 2019;7:1658-64.
9. Van der Walt CL, Heyns CF, Groeneveld AE. The use of a pictogram-based urinary symptom score in men with lower urinary tract symptoms in diverse populations. *S Afr Med J.* 2013;103(6):419–23.
10. Chawla A, Gali KV. Using pictures instead of words: visual-validated questionnaires for LUTS and neurogenic bladder. *Current Bladder Dysfunction Reports.* 2024 Mar;19(1):27-36.
11. Taylor BC, Wilt TJ, Fink HA, Lambert LC, Marshall LM, Hoffman AR, et al. Prevalence, severity, and health correlates of lower urinary tract symptoms among older men: the MrOS study. *Urology.* 2006;68(4):804-9.
12. Wessels P, Heyns CF. Prospective comparison of a new visual prostate symptom score versus the International Prostate Symptom Score in men with lower urinary tract symptoms. *BJU Int.* 2011;108(8):1388–93.
13. Gupta DK, Arora S, Sinha S, Yadav P, Shrestha P, Shah R. Visual Prostate Symptom Score versus International Prostate Symptom Score: a prospective comparison of validity and ease of use. *Prostate Int.* 2016;4(2):61–5.
14. Sanman KN, Shetty R, Adapala RR, Patil S, Prabhu GL, Venugopal P. Can new, improvised Visual Prostate Symptom Score replace the International Prostate Symptom Score? Indian perspective. *Indian J Urol.* 2020;36(2):123–9.
15. Putra IB, Hamid AR, Rasyid N, Mochtar CA, Umbas R. Comparison of Visual Prostate Symptom Score with the International Prostate Symptom Score and uroflowmetry parameters in assessing men with lower urinary tract symptoms. *Prostate Int.* 2019;7(3):91–5.
16. Bhomi KK, Agrawal A, Kharel H, Chapagain S, Sah B, Dahal S, et al. Correlation of Visual Prostate Symptom Score (VPSS) and International Prostate Symptom Score (IPSS) with uroflowmetry parameters in men with lower urinary tract symptoms. *JNMA J Nepal Med Assoc.* 2022;60(251):178–82.
17. Taneja Y, Ram P, Kumar S, Raj K, Singh CK, Dhaked SK, et al. Comparison of Visual Prostate Symptom Score and International Prostate Symptom Score in the evaluation of men with benign prostatic hyperplasia: a prospective study from an Indian population. *Prostate Int.* 2017;5(4):158–61.
18. <https://www.researchgate.net/profile/AndikaAfriansyah/publication/271140071/figure/fig1/AS:269597429465105@144128444581/Visual-Prostate-Symptom-Score-VPSS-consisting-of-pictogram-to-evaluate-A-frequency.png>
19. <https://www.researchgate.net/profile/JitenJaipuria/publication/316357686/figure/fig1/AS:511881733054464@1499053523798/International-Prostate-Symptom-Score-questionnaire.png>

FIGURE 7- VPSS SCORE¹⁸
Mild (3–8)
Moderate (9–16)
Severe (17–23)

International Prostate Symptom Score (I-PSS)

Patient Name: _____ Date of birth: _____ Date completed _____

In the past month:	Not at All	Less than 1 in 5 Times	Less than Half the Time	About Half the Time	More than Half the Time	Almost Always	Your score
1. Incomplete Emptying How often have you had the sensation of not emptying your bladder?	0	1	2	3	4	5	
2. Frequency How often have you had to urinate less than every two hours?	0	1	2	3	4	5	
3. Intermittency How often have you found you stopped and started again several times when you urinated?	0	1	2	3	4	5	
4. Urgency How often have you found it difficult to postpone urination?	0	1	2	3	4	5	
5. Weak Stream How often have you had a weak urinary stream?	0	1	2	3	4	5	
6. Straining How often have you had to strain to start urination?	0	1	2	3	4	5	
	None	1 Time	2 Times	3 Times	4 Times	5 Times	
7. Nocturia How many times did you typically get up at night to urinate?	0	1	2	3	4	5	
Total I-PSS Score							

Score: 1-7: Mild 8-19: Moderate 20-35: Severe

Quality of Life Due to Urinary Symptoms	Delighted	Pleased	Mostly Satisfied	Mixed	Mostly Dissatisfied	Unhappy	Terrible
If you were to spend the rest of your life with your urinary condition just the way it is now, how would you feel about that?	0	1	2	3	4	5	6

FIGURE 8- IPSS SCORE¹⁹
Mild (≤ 7)
Moderate (8-19)
Severe (20-35)