Changes in Archwidth of Class I Malocclusion Patients Treated With Extraction and Nonextraction in Indian Population

1Dr. Harish Atram, 2Dr. Shefali Gedam, 3Dr. Rashmi Jawlekar, 4Dr. Sagar Barkhade, 5 Dr. Tanvi Patni, 6Dr. Shantanu Kaloch
1Reader and Professor, 2, 4, 5, 6Post Graduate Student, 3Head and Professor
Department of Orthodontics and Dentofacial Orthopaedics, Swargiya Dadasaheb Kalmegh Smruti Dental College and Hospital, Nagpur, Maharashtra, India

Corresponding Author:
Dr. Shefali Gedam
Post Graduate student, Department of Orthodontics and Dentofacial Orthopaedics, Swargiya Dadasaheb Kalmegh Smruti Dental College and Hospital, Nagpur, Maharashtra

Type of Publication: Original Research Paper
Conflicts of Interest: Nil

ABSTRACT
Aim: The study was to determine the pre- and post-treatment width changes of class I malocclusion treated with extraction and non-extraction treatment.

Material and Method: - Pre- and post-treatment orthodontic study models of 70 patients irrespective of gender who underwent comprehensive orthodontic therapy were evaluated. Thirty-five were treated non-extraction with fixed appliance therapy and thirty-five with extraction of the first premolars. Measurement where made in the canine and molar region using digital vernier caliper at labial aspect of the buccal surfaces of the canine and molar. Measurement where compared statistically to determine whether the dental arches where narrower after extraction treatment.

Result: - No significant difference was observed in pre treatment intercanine and intermolar width of extraction and nonextraction group. In the posttreatment extraction group there is an decrease of 1mm in the intercanine and intermolar region. In the posttreatment nonextraction group, the intercanine width is decreased in both the arches, whereas intermolar width is increased in lower arch.

Conclusion: - This indicates that posttreatment record of extraction group results in narrower dental arches whereas posttreatment record of nonextraction group results increase of intermolar width that is wider posterior arches.

Keywords: Intermolar width, Intercanine width, Dental arch, Orthodontics.

INTRODUCTION
The success of orthodontic treatment is influenced by the clinician ability to develop an optimal treatment plan. For diagnosis and treatment planning arch dimension including archwidth, arch length and interalveolar width plays an important role in orthodontic practice. Dental arch width changes from natural growth and due to orthodontic treatment. Studies by Moores and others have shown that archlength decreases in the transition stage from the deciduous to the permanent dentition and then continuous to decrease with increasing age. Studies also shown that archwidth changes due to orthodontic treatment shows. larger arch width in males than in female.

Transverse/ Vertical malrelation can be treated by extraction and nonextraction treatment in permanent dentition. In the recent years the effect of extraction on the buccal corridor represents the space between
the buccal surface and the corresponding corner of the mouth representing it unesthetics and consumes longer treatment duration. On the contrary nonextraction treatment is of shorter duration.

Data on archwidth, archform and circumference are available on Nepalese, Bangladesh and in American Black and White population. However studies comparing the changes in archwidth of Indian population is scare. Hence this study attempts to compare the archwidth of male and female Indian population treated with extraction and nonextraction treatment.

Materials and methods

Data collection A universal digital calliper (electronic carbon fiber vernier calliper gauge micrometer) with accuracy 0.01 mm dental arches were measured in the canine and the first molar regions from the most labial aspect of the buccal surfaces of these teeth.(Fig 01) The caliper was placed at right angle to the palatal suture in the maxillary arch and to a line bisecting the incisor segment in the mandibular arch. The average of first three measurements was considered the final value. The random error of measurement was assessed by Dahlberg’s formula:7

\[
S_x = \sqrt{\frac{\sum D^2}{2N}}
\]

Where, D is the difference between duplicate measurements, and N is the number of double determinations. The range of error of measurement was 0.22 to 0.50. The collected data was treated statistically by using two tailed t-test (p < 0.05).

Inclusion criteria

• Patient’s sample where of Indian population.

• Class I dental and skeletal malocclusion

• Patient’s treated with MBT edgewise appliances in both arches without use of any extraoral or temporary anchorage device.

Exclusion criteria

• Patient’s had no history of cleft, dentofacial deformity or syndrome.

• Patient’s had never received orthodontic and orthognathic surgery

• The sample was randomly selected and then for descriptive purposes, sample was classified into following groups.

• (1) Extraction group = (a) Pretreatment (b) Posttreatment

• (2) Nonextraction group = (a) Pretreatment (b) Posttreatment

• The archwidth measurement where done using digital electronic carbon fiber vernier calliper gauge micrometer.

• The measurement where taken from most labial aspect of canine and molar region in the upper and lower cast.

Statistical analysis

• Statistical analysis was done by using descriptive and inferential statistics using student’s paired and unpaired ‘t’ test and software used in the analysis where SPSS 24.0 version and Graphpad prism 7.0 version and p < 0.05 is considered as level of significance

RESULT

• Table 1, Graph 1: Mean intercanine width for upper cast was 32.33±0.20 and mean intermolar width was 57.45±0.28. By using student’s unpaired t test statistically significant difference was found in upper cast between intercanine width and intermolar width(t=419.85,p=0.0001).

• Mean intercanine width for lower cast was 28.44±0.20 and mean intermolar width was 56.44±0.19. By using student’s unpaired t test statistically significant difference was found in lower cast between intercanine width and intermolar width(t=583.85,p=0.0001).

• Table 2, Graph 2: Mean intercanine width of upper cast (34.47±0.22) and mean intermolar width of upper cast (58.52±0.24) Mean intercanine width of lower cast (33.43±0.18) and mean intermolar width of lower cast (57.43±0.21), upper cast(t=424.47, P=0.0001), lower cast (t=491.31 , P = 0.0001,S).

• Table 3, Graph 3: Mean intercanine width of upper cast (32.31±0.19) and mean intermolar width of upper cast (57.42±0.16) Mean intercanine width of lower cast (28.42±0.18) and mean intermolar width of lower cast
(56.46±0.17), upper cast (t = 586.51, P = 0.0001, S), lower cast (t = 643.2, P = 0.0001, S)

• Table 4, Graph 4: Comparison of posttreatment and upper and lower cast in intercanine width and intermolar width in non-extraction group. Mean intercanine width of upper cast (31.35±0.17) and mean intermolar width of upper cast (56.56±0.24). Mean intercanine width of lower cast (27.45±0.20) and mean intermolar width of lower cast (58.48±0.21), upper cast (t = 491.67, P = 0.0001, S), lower cast (t = 612.63, P = 0.0001, S)

Discussion

• This investigation incorporated the issue of maxillary expansion into the extraction versus non-extraction debate. However, it should be borne in mind that this study only relates to the treatment findings and that the long-term stability of the treatment approaches may lead to differences between the groups in terms of relapse and post-treatment changes. For many years, the use of extraction treatment to treat malocclusion has been debated and found to be in same results. The implication of non-extraction treatment will result in broader dental arches and more attractive smiles. The data on the present study mainly focuses on change in archwidth in the canine and premolar region of pretreatment and post-treatment cast dimension. The measurement done using digital electronic carbon fiber vernier calliper gauge micrometer on the labial surface of canine and molar instead of cusp tip of canine and molar was also done by Gianelly et al for reason 1) to determine the widest possible width of the arches 2) to prevent confusion when selected cusp tip where not distinct 3) to avoid identifying specific molar for measurement in extraction treatment as noted by Johnson and Smith.

• The study done by Meyer et al, Kim et al, Ghafari J, Spahl T has advocated the current trend of non-extraction treatment in patients because of social media influences and partly because of the belief by some that extraction of premolar leads to poor esthetic result through creating larger buccal corridor from constriction of dental arches.

• According to findings of the present study the arch widths in both canine and molar region in the mandibular arches did not show any statistical significant results. In fact the arches in both posttreatment extraction group and posttreatment non-extraction group was decreased by 1 mm in intercanine region whereas the archwidth in the intermolar region remained stable in both extraction and non-extraction group. The results of this study can be compared with studies in which posttreatment long term stability of mandibular intermolar width stability was found acceptable.

• Weinberg and Sadowsky found significant increase in mandibular intercanine and intermolar width in class I malocclusion treated non-extraction and stated that the expansion of buccal segments in the mandibular arches helped in resolution of class I crowding.

• To some investigators maxillary arch width is determinant of smile esthetics, the maxillary arch widths in extraction and non-extraction groups were same so it can be expected that the treatment effects in maxillary arches will be the same, and there will be no difference in esthetic scores in both the groups. In fact the pretreatment intercanine widths in extraction groups and non-extraction group was found stable in class I malocclusion. However, the future studies in the maxillary arches in various malocclusion classifications with various treatment mechanics will be productive. However, future studies with various malocclusion groups, treatment mechanics, larger sample size and long-term changes in arch dimensions will be useful.

Conclusion

• In the initial phase of treatment the intercanine and intermolar width of extraction and non-extraction group are stable in both the arches.
• In the posttreatment extraction group there is a decrease of 1mm in the intercanine and intermolar region.

• In the posttreatment nonextraction group, the intercanine width is decreased in both the arches, whereas intermolar width is increased in lower arch.

Table 1: Comparison of pre-treatment and upper and lower cast in intercanine width and intermolar width in extraction group

<table>
<thead>
<tr>
<th></th>
<th>Intercanine Width</th>
<th>Intermolar Width</th>
<th>t-value</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper Cast</td>
<td>32.33±0.20</td>
<td>57.45±0.28</td>
<td>419.85</td>
<td>0.0001,S</td>
</tr>
<tr>
<td>Lower Cast</td>
<td>28.44±0.20</td>
<td>56.44±0.19</td>
<td>583.85</td>
<td>0.0001,S</td>
</tr>
</tbody>
</table>

Table 2: Comparison of post-treatment and upper and lower cast in intercanine width and intermolar width in extraction group

<table>
<thead>
<tr>
<th></th>
<th>Intercanine Width</th>
<th>Intermolar Width</th>
<th>t-value</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper Cast</td>
<td>34.47±0.22</td>
<td>58.52±0.24</td>
<td>424.47</td>
<td>0.0001,S</td>
</tr>
<tr>
<td>Lower Cast</td>
<td>33.43±0.18</td>
<td>57.43±0.21</td>
<td>491.31</td>
<td>0.0001,S</td>
</tr>
</tbody>
</table>
Table 3: Comparison of pre treatment and upper and lower cast in intercanine width and intermolar width in non extraction group

<table>
<thead>
<tr>
<th></th>
<th>Intercanine Width</th>
<th>Intermolar Width</th>
<th>t-value</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper Cast</td>
<td>32.31±0.19</td>
<td>57.42±0.16</td>
<td>586.51</td>
<td>0.0001,S</td>
</tr>
<tr>
<td>Lower Cast</td>
<td>28.42±0.18</td>
<td>56.46±0.17</td>
<td>643.22</td>
<td>0.0001,S</td>
</tr>
</tbody>
</table>
Graph 3: Comparison of pre-treatment and upper and lower cast in intercanine width and intermolar width in non-extraction group

Table 4: Comparison of post-treatment and upper and lower cast in intercanine width and intermolar width in non-extraction group

<table>
<thead>
<tr>
<th></th>
<th>Intercanine Width</th>
<th>Intermolar Width</th>
<th>t-value</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper Cast</td>
<td>31.35±0.17</td>
<td>56.56±0.24</td>
<td>491.67</td>
<td>0.0001,S</td>
</tr>
<tr>
<td>Lower Cast</td>
<td>27.45±0.20</td>
<td>58.48±0.21</td>
<td>612.63</td>
<td>0.0001,S</td>
</tr>
</tbody>
</table>

Graph 4: Comparison of post-treatment and upper and lower cast in intercanine width and intermolar width in non-extraction group
References:


and dentofacial orthopedics. 2008 May 1;133(5):669-80.


19. SOBHI AM, Ebadifar A. Dimensional changes of dental arch following non-extraction orthodontic treatment.


